返回

全部分类

学科 资讯 高考报考 试题 作文 志愿填报

导数的基本公式

2023-11-23

  导数的基本公式:yc(c为常数)y’=0、y-xny’=nx(n-1)。不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。

导数的基本公式

  导数的性质是什么

  1、单调性

  (1)若导数大于零,则单调递增:若导数小于零,则单调递减,导数等于零为函数驻点,不一定为极值点。需代入驻点左右两边的数值求导数正负判断单调性。

  (2)若已知函数为递增函数,则导数大于等于零;若已知函数为递减函数,则导数小丁等于零。

  根据微积分基本定理,对于可导的函数,有:

  如果函数的导函数在某一区间内恒大于零(或恒小于零),那么函数在这一区间内单调递增(或单调递减),这种区间也称为函数的单调区间。导函数等于零的点称为函数的驻点,在这类点上函数可能会取得极大值或极小值(即极值可疑点)。

  进一步判断则需要知道导函数在附近的符号。对于满足的一点,如果存在使得在之前区间上都大于等于零,而在之后区间上都小于等于零,那么是一个极大值点,反之则为极小值点。

  x变化时函数(蓝色曲线)的切线变化。函数的导数值就是切线的斜率,绿色代表其值为正,红色代表其值为负,黑色代表值为零

  2、凹凸性

  可导函数的凹当性与其导数的单调性有关。如果函数的导函数在某人区间上单调递增那么这个区间上函数是向下凹的,反之则是向上凸的。

  如果二阶导函数存在,也可以用它的正负性判断,如果在某个区间上恒大于零,则这个区间上函数是向下凹的,反之这个区间上函数是向上凸的。曲线的凹凸分界点称为曲线的拐点。

  导数的性质是什么

  (1)若导数大于零,则单调递增;若导数小于零,则单调递减;导数等于零为函数驻点,不一定为极值点。需代入驻点左右两边的数值求导数正负判断单调性。

  (2)若已知函数为递增函数,则导数大于等于零:若已知函数为递减函数,则导数小于等于零。

  如果函数的导函数在某一区间内恒大于零(或恒小于零),那么函数在这一区间内单调递增(或单调递减),这种区间也称为函数的单调区间。

  导函数等于零的点称为函数的驻点,在这类点上函数可能会取得极大值或极小值(即极值可疑点)。进一步判断则需要知道导函数在附近的符号。对于满足的一点,如果存在使得在之前区间上都大于等于零,而在之后区间上都小于等于零,那么是一个极大值点,反之则为极小值点。

大家都在看

猜你喜欢

Copyright© 2023 高起点 版权所有

渝ICP备2020011602号-3